
Least-squares estimators on periodically 
sampled noisy signals 

1. Introduction 
In this report, we will describe the situation of attempting to extract useful information from sampled 

data. We will describe how least-squares polynomials are a useful tool, but potentially expensive. We will 

then describe how these formulas can be simplified if the data is sampled periodically. We will then look 

at extracting data using least-squares linear and then quadratic polynomials to find various estimators, 

including taking into account the concept of jitter. We will then see the most efficient mechanism to 

extract these estimators if not only one or two of these estimators are required, but perhaps three, four or 

more, in which case, we can return to using algebra and calculus to derive other estimators based on the 

calculations of a subset of the estimators. We will conclude the descriptive component of this report with 

a brief description of when to use least-squares linear polynomials for calculating these estimators, and 

when to use least-squares quadratic polynomials. This will be followed by a description of the associated 

C++ library that calculates these estimators and displays the associated coefficients. 

2. Background 
Suppose we have data we have read from a sensor: 

   1 1, , , ,n n n nt y t y  . 

When data read from a sensor is noisy, it is in general a poor approach to using interpolating polynomials 

as the noise amplifies the error of the interpolating polynomials. Instead, it is often beneficial to use least-

squares linear or quadratic polynomials through the last N points to extract information from the data. 
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respectively, is minimized. This can be done through the application of linear algebra, although, finding 

the coefficients of these least-squares polynomials is normally a computationally expensive task. For 

example, suppose we are finding the least-squares best-fitting linear or quadratic polynomial through N 

points. This would require us to solve what is called the normal equations 
T TA A Ac y . In this case, we 

must perform the following calculations as described in Table 1 indicating the calculations that must be 

made, and the total number of floating-point operations (FLOPs). 

  



       Table 1. Required operations for finding best-fitting polynomials. 
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Total 6N + 5  12N + 21 

 

Note that these are under the assumption the programmer is competent and minimizes the number of 

floating-point operations. 

Once the coefficients of the least-squares polynomial are found, then appropriate calculations can be 

made. For example, we can find the best estimator for the current value yn using 

nat b  or 
2

n nat bt c  , 

respectively, and we can find the best estimator for the next value yn+1 using 

1nat b   or 
2

1 1n nat bt c   , 

respectively. Similarly, the best estimator of the velocity at the current time is either 

a  or 2 nat b , 

respectively, and if you are using least-squares quadratic polynomials, the best estimator of the 

acceleration is  

2a . 

3. A more efficient approach: periodic sampling 
This reduction in the number of FLOPs is beneficial in real-time applications with real constraints on 

power, memory and speed, and thus unnecessary computations are expensive. Fortunately, if the samples 

are taken periodically; that is, if 
1k kt t t    for all k > 0 for some fixed period t , then many of the 

formulas, be it finding the best estimator of current value or the best predictor of the next value, or the 

best estimator of the current change  per period or the actual rate of change, all these can be found via a 

simple linear combination of the y values; that is, we have reduced the runtime from 6n or 12n down to 

2n – 1 FLOPs. For example, to find the best approximation of the current value at time tn using the current 

reading yn and five previous readings yn–1, …, yn–5 is 
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This is independent of the period t between readings. As a proof of concept, the source file 

least_sqrs_est.h contains a number of functions that use either a least-squares linear polynomial or 

least-squares quadratic polynomial with m points yn, yn–1, yn–2, …, yn–m+1 to return: 

1. the best estimator of yn, 

2. the best estimator of yn+1, 

3. the best estimator of the change per t  (slope) at time tn, 

4. the best estimator of the integral of y from tn–1  to tn, and 

5. the best estimator of the change per t  per t  (concavity) at time tn but for the least-squares 

quadratic polynomial, only. 

Additionally, there are functions to: 

1. use a least-squares linear polynomial to estimate how many time steps t  from tn that the signal 

will zero, 

2. use a least-squares quadratic polynomial to estimate how many time steps t  from tn that the 

signal will zero, and 

3. use a least-squares quadratic polynomial to estimate how many time steps  t  from tn that the 

signal will reach a local extrema. 

Finally, all systems experience jitter, in the sense that readings that are meant to be taken periodically are 

not actually periodically. If this difference is negligible, then this is not a problem, but suppose that the 

reading yn took place at time 
nt t   where 1 1   , although, it is better if 0.1 0.1   . All of these 

coefficients were found using the symbolic computation language Maple, and an example of the 

algorithms used are shown in Appendix A. We will look at all of these, starting with least-squares linear 

polynomials. 

3.1 Least-squares linear polynomials 
To visualize least-squares linear polynomials, Figure 1 shows the least-squares linear polynomial passing 

through eight points, and that polynomial evaluated at tn is the best approximation of yn. 

 
Figure 1. A least-squares linear polynomial passing through 

eight points and the best approximation of the point yn. 

The best linear estimator of the actual value at time tn of this signal can be found by calculating 

  15 9 6 3 3 612
1 2 3 4 6 736 36 36 36 36 36 36

ˆ
n n n n n n n ny t y y y y y y y            .  

You will note that it does not depend on yn–5. The reader is invited to observe that this in fact true through 

a few trials with different values at tn. Also, the reader will note that the sum of the coefficients is one, as 

adding a constant to each reading should add that same constant to the estimator. 



Next, Figure 2 shows that least-squares polynomial evaluated at tn+1, the best approximation of the signal 

one period into the future, which can be found using the formula 

  8 5 714 11 2 1 4
1 1 2 3 4 5 6 728 28 28 28 28 28 28 28

ˆ
n n n n n n n n ny t y y y y y y y y               , 

where the reader will note that the some of the coefficients is one, where again, as adding a constant to 

each reading should add that same constant to the same estimator. 

 
Figure 2. A least-squares linear polynomial passing through 

eight points and the best current approximation of the point yn+1. 

The approximation of the change per period is simply the slope of the best-fitting line, given by the 

formula 

   1 7 5 3 3 5 71 1
1 2 3 4 5 6 784 84 84 84 84 84 84 84

ˆ
n n n n n n n n ny t t y y y y y y y y               , 

and to find the actual rate of change per unit time (speed), one need calculate 
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estimator of the next point is found by adding the estimation of the current point plus the estimation of the 

change per period. As expected, the sum of the coefficients of the estimator    1ˆ
ny t t  is zero, for adding 

a constant to each value should not change such an estimate. 

The estimator of the average value of the signal over the last time period would be given by 

 1
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and again, the astute reader will note that this is the approximation of the average value over the last 

period is found by subtracting half of the estimation of the change per period from the estimation of the 

current point. You will note that the sum of the coefficients is one, for adding a constant to each reading 

should increase the estimator by that same value. 

This average value can then be used to estimate the integral, as shown in Figure 3, by calculating 
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Figure 3. A least-squares linear polynomial passing through 

eight points and the area under that line from tn–1 to tn. 

3.2 Least-squares quadratic polynomials 
The same technique is used for approximating yn and yn+1 when using a least-squares quadratic 

polynomial passing through the eight points, as shown in Figures 4 and 5. 

 
Figure 4. A least-squares quadratic polynomial passing through 

eight points and the best approximation of the point yn. 

 
Figure 5. A least-squares quadratic polynomial passing through 

eight points and the best current approximation of the point yn+1. 

These formulas are 

  85 45 15 5 15 15 5 15
1 2 3 4 5 6 7120 120 120 120 120 120 120 120

ˆ
n n n n n n n n ny t y y y y y y y y              , 

and 

  63 27 15 17 31 21 21
1 1 2 3 4 5 6 756 56 56 56 56 56 56 56

ˆ
n n n n n n n n ny t y y y y y y y y               , 

respectively. The reader will also note that, as before, the sum of the coefficients is one. 

In order to estimate the instantaneous change per period at time tn, we must find the derivative of the 

least-squares quadratic polynomial and then evaluate that at the point tn, as shown in Figure 6. 



 
Figure 6. A least-squares quadratic polynomial passing through 

eight points and the best approximation of the derivative at tn+1. 

The formula for this is  

   1 945 255 225 495 555 405 45 525
1 2 3 4 5 6 72520 2520 2520 2520 2520 2520 2520 2520

ˆ
n n n n n n n n ny t t y y y y y y y y               , 

and an estimator of the speed is therefore    
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approximation of the instantaneous change per period per period, all we need do is calculate the second 

derivative of the least-squares quadratic polynomial, a result that is a constant, and is 

   2 2 3 9 15 15 9 321 21
1 2 3 4 5 6 7252 252 252 252 252 252 252 252

ˆ
n n n n n n n n ny t t y y y y y y y y               , 

so an approximation of the acceleration or concavity is    
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n n n ny t y t y t t y t t      ; that is, the estimator of the next point is 

the estimator of the current point plus the change per period plus one-half the change per period per 

period. 

Finally, the estimator of the average value of the signal over the last time period would be given by  

 1

8085 4935 2475 705 375 765 465 525
1 2 3 4 5 6 715120 15120 15120 15120 15120 15120 15120 15120
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and , as shown in Figure 7 and therefore an estimator of the integral of the signal over the last time period 

is 
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ˆ
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
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Figure 7. A least-squares quadratic polynomial passing through 

eight points and the area under that curve from tn–1 to tn. 



3.3 Estimating roots and extrema 
To approximate when the signal will be zero, if we are finding a least-squares linear polynomial, we need 

only find the root of that line. Thus, given the estimators above for least-squares linear polynomials for 
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Similarly, given the least-squares quadratic polynomial estimators for  ˆ
ny t ,    1ˆ

ny t  and    2ˆ
ny t , it 

follows that the polynomial is  
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and therefore the roots relative to tn are  
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periods relative to tn, and thus, the estimated times the signal will be zero are 
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and therefore, we may conclude that the number of periods from the current moment that the zero of the 

signal will occur is  
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where you will note that    1ˆ
ny t t  and    2 2ˆ

ny t t  are the estimators found above. 

Similarly, the extreme point of the least-squares quadratic polynomial is the point 
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and therefore the actual estimated time that the signal will reach an extreme point will be at 
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and so the maximum will be reached 
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 periods from the present, where again 

we note that    1ˆ
ny t t  and    2 2ˆ

ny t t  are the estimators found above. 

3.4 Jitter 
Suppose the most recent reading yn was not taken at time tn, but rather, it was taken at time tn + t. In this 

case, this is still a valid reading, but it breaks the periodic sampling required for these formulas to work—

we would be reduced to returning to solving the normal equations. Instead, as we are primarily concerned 

with the estimator of the signal at time tn, our goal will be to find a value 
ny  such that estimator of the 

signal at tn using the points    1 1, , , ,n n n nt y t y   is equal to the estimator of the signal at tn when finding 

the least-squares polynomial through    1 1, , , t,n n n nt y t y    . This is shown in Figures 8 and 9. 

 

Figure 8. Given that the n
th
 reading was taken at time tn + t, correcting for this error in  

the reading time, we approximate that point 
ny  such that the estimator at time tn for both data  

sets      7 7 1 1, , , , , ,n n n n n nt y t y t y       and      7 7 1 1, , , , , ,n n n n n nt y t y t y     is equal. 

 

 

 

Figure 9. Given that the n
th
 reading was taken at time tn + t, correcting for this error 

in the reading time, we find that point 
ny  such that the estimator at time tn for both data 

sets      7 7 1 1, , , , , ,n n n n n nt y t y t y       and      7 7 1 1, , , , , ,n n n n n nt y t y t y     is equal. 

 

Unfortunately, this is a rational polynomial  expression in  that would be prohibitive to calculate, and 

thus we will use only a linear approximation of this calculate. For eight points, the least-squares linear 

and quadratic polynomial approximations are 

 126 477 324 171 18 135 288 441
1 2 3 4 5 6 73780 3780 3780 3780 3780 3780 3780 3780n n n n n n n n n ny y y y y y y y y y                 



and 

 47250 64200 4950 46800 61350 48600 8550 58800
1 2 3 4 5 6 7214200 214200 214200 214200 214200 214200 214200 214200n n n n n n n n n ny y y y y y y y y y                 , 

respectively with the error being O( 2
), and thus, if  is sufficiently small, this will be a reasonable 

approximation. 

To give an example, consider the data  

5.7344,  6.7585,  6.4353,  7.9155,  8.4797, 8.7731,  9.6916, 10.5857, 12.0946, 12.5924, 

and suppose the last reading was read at time tn + 0.1t. Thus, given the points (tn–7, 5.7344), …, 

(tn–1, 12.0946),  (tn + 0.1t, 12.5924), if we were to find the least-squares linear and quadratic polynomials 

that best fit this data and evaluate that polynomial at tn, we would get the estimators 12.3024378951912 

and 12.6596226343653, respectively. If we were to ignore the jitter, and simply take the reading at time 

tn + 0.1t as the reading at tn, then the estimators would be 12.3274 and 12.7280136363636, respectively, 

and thus introducing relative errors of 0.2% and 0.5%, respectively. We will now consider the two above 

approaches to correct for the jitter. 

For the least-squares linear polynomial we get that the best approximation of the value yn is 

12.50866885714286, so if we find the best estimator of yn through the data (tn–7, 5.7344), …, 

(tn–1, 12.0946),  (tn, 12.50866885714286), we get the value 12.2984746970909, which is much closer to 

12.3024378951912, reducing the relative error by a factor of ten in this example. 

For the least-squares quadratic polynomial we get the best approximation of the value yn is 

12.48695035714286, so if we find the best estimator of yn through the data (tn–7, 5.7344), …, 

(tn–1, 12.0946),  (tn, 12.48695035714286), we get the value 12.6628265861818, which is much closer to 

12.6596226343653, reducing the relative error by a factor of twenty in this example. 

3.5 Summary of a more efficient approach 
We have seen that if a sensor is periodically sampled, then information can be extracted from that data 

using much simpler algorithms than having to solve the normal equations associated with linear 

regression. It is not only possible to estimate the current or future values of the data, but also rates of 

change and concavity as well as integrals, and also estimators of when the signal will be zero or at a local 

minimum or maximum. Finally, we looked at the question of correcting jitter, the phenomenon that some 

physical systems may not have perfect periodic sampling and to try to correct this. We will now go on to 

see how we can estimate most of these estimators by only finding two or three estimates: the estimators of 

the current value, the current change per period and the current change per period per period. Finally, to 

correct for errors in when sensors are read, techniques can be used to correct for such jitter, as opposed to 

ignoring it altogether. 

  



4. Multiple estimators required 
Suppose you require more than just one estimator. In that case it is always possible to derive all other 

estimators from the estimators for the current value, change per period, if necessary, and acceleration per 

period.  

4.1 Least-squares linear polynomials 

Given the two estimators for  ˆ
ny t  and    1ˆ

ny t t , the estimator of the current value and the estimator of 

the current rate-of-change per period, it follows that: 

1. an estimator of the next value is      1ˆ ˆ
n ny t y t t  , 

2. an estimator of the average value of the signal over the previous interval is      11
2

ˆ ˆ
n ny t y t t   

and thus an estimator of the integral over the previous period is       11
2

ˆ ˆ
n ny t y t t t   , and 

3. an estimator of when the signal is zero is 
 

   1

ˆ

ˆ

n

n

y t

y t t



 as a multiple of periods from the current  

time and thus an estimator of the absolute time the signal will be zero is 

 
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Thus, the total number of calculations required to find all five estimators is 4n + 2 FLOPs. 

4.2 Least-squares quadratic polynomials 

Given the three estimators  ˆ
ny t ,    1ˆ

ny t t  and    2 2ˆ
ny t t , the estimators of the current value, current 

change per period, and change per period per period, it follows that: 

1. an estimator of the next value is          1 2 21
2

ˆ ˆ ˆ
n n ny t y t t y t t    , 

2. an estimator of the average value over the previous period is          1 2 21 1
2 6

ˆ ˆ ˆ
n n ny t y t t y t t    , 

and thus an estimator of the integral over the previous period is 

          1 2 21 1
2 6

ˆ ˆ ˆ
n n ny t y t t y t t t     , 

3. an estimator for the number of periods to the next extreme point is 

   
   
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from the current time, and thus an estimator of the absolute time to the next extreme point is 
   
   
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n

n

n
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4. an estimator for the zeros are found with 
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Consequently, all the estimators can be found with 6n + 23 FLOPs. 



Estimators required each period 
If all estimators are required with each period, it is possible to calculate all of these estimators in O(1) 

time, requiring no more memory apart from less than a dozen local variables. In the above cases, we 

assumed the data was periodically sampled, 

         1 1 2 2 2 2 1 1, , , , , , , , , ,n N n N n N n N n n n n n nt y t y t y t y t y            , 

however, the data is really independent of the period, so instead we will use the model 

         1 2 2 11 , , 2 , , , 2, , 1, , 0,n N n N n n nN y N y y y y         . 

In this case, finding the least-squares polynomial reduces to solving the linear equations 
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and  
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We can used the known formulas to evaluate the left-hand matrix, and if we represent the sums in the 

right-hand vector as 
0

1y n kk N
S y  

 , 
0

1xy n kk N
SP ky  

  and 2

0 2

1 n kx y k N
SP k y  

  we get 
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and 
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Thus, solving for the coefficients is a simple formula: 
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If N is known at compile time, both coefficients can be calculated with only 6 FLOPs. Similarly, the 

coeffiicients for the least-squares quadratic polynomial can be found with 
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where if N is known at compile time, these can be calculated with only 15 FLOPs. With these coefficients, 

we can now compute the following: 

Estimator Linear Quadratic 

Estimate the current value b c 

Estimate the next value b + a a + b + c 

Estimate the rate of change per period a b 

Estimate the rate of change per period per period – 2a 

Estimate the average over the last period –½a + b ⅓a – ½b + c  

Estimate the average over the next period   ½a + b ⅓a + ½b + c 

Estimate when the signal will be zero –b/a  

Estimate when the signal will reach an extremum  –½b/a 

 

Thus, given the coefficients of the least-squares polynomials, we can quickly find all estimators in O(1) 

time. The only issue is, however, that we must have Sy, SPxy and for the quadratic case, SPx2y. Nominally, 

each of these requires O(N) time to calculate, however, we are fortunate, as we will see next. 

Suppose we have the sum of the y-values from the last period up to y–1, 

 1
1 2 3 2 1 0y N N N yS y y y y y y



             ; 

and we now want to compute the sum of the y-values up to y0, 

 0

1 2 3 2 1 0Ny N NS y y y y yy y           . 

You will note that we can compute the next sum using the previous sum in O(1) time: 



 0 1

0y y NS S y y

   . 

Thus, if we track the previous sum of the last N y-values, then calculating Sy for the current last N y-

values can be quickly calculated in O(1) time. 

More difficult, however, may be to see how we can calculate SPxy given a previously calculated, 
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and we now want to compute the sum of the y-values up to y0, 
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If we subtract the first from the second, we see that 
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Recall, however, that we already have the sum of the y-values, so 
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Thus, we can calculate the current sum-of-products for the last N points as a linear combination of two 

previously known values, and thus can be calculated in O(1) time. Similarly, 
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Subtracting the second from the first, we get 
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Thus, we note that        
2 2

0 1 1 12 2N xy yx y x y
SP SP N y SP S

  

    , and therefore all of the sums may be 

calculated in O(1) time based on previous values, even though each sum nominally requires O(N) 

calculations. 

Thus, in conclusion, if these estimators are required with each period, then all estimators can be 

calculated in O(1) time, with a relatively small number of FLOPs. 

  



Next, to deal with jitter, we want to find a y
*
 such that the constant coefficient solution b of 

    

 

2
1 2 1 1

6 2

1

2

xy

y

N N N N N

SP ya

SbN N
N

 




   
      

     
     

  
 

 

has the same constant coefficient solution of 
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; 

that is, we want to find that y
*
 such that the estimator of the current value remains unchanged. In this case, 

it can be shown by solving both systems of linear equations and solving for y
*
, we get that 
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While this appears complex, note that most of the coefficients can be calculated at compile time, so this 

requires in fact only 20 FLOPs—a small price to pay to deal reasonably with jitter. Note that in this case, 

we can use the exact formula, as opposed to the series approximation above, because we have Sy and SPxy. 

To demonstrate that this works, let us assume the most recent reading is taken 0.1 times the period after it 

should have been taken. The least-squares linear polynomial that passes through the data 

(–9, 5.7344), (–8, 6.7585), (–7, 6.4353), (–6, 7.9155), (–5, 8.4797), 

(–4, 8.7731), (–3, 9.6916), (–2, 10.5857), (–1, 12.0946), (0.1, 12.5924) 

is 12.3024378951912 + 0.756427148149479n, which evaluated at n = 0 is 12.3024378951912. The above 

formula for the correction for jitter is y
*
 = 12.52014127555338, and the least-squares linear polynomial 

passing through the data 

(–9, 5.7344), (–8, 6.7585), (–7, 6.4353), (–6, 7.9155), (–5, 8.4797), 

(–4, 8.7731), (–3, 9.6916), (–2, 10.5857), (–1, 12.0946), (0, 12.52014127555338) 

is 12.3024378951912 + 0.756351948363518n, which has the same constant coefficient and the relative 

difference in the slope is 0.01%. 

  



If jitter was not corrected for (that is, the reading taken 0.1 times the period after the time it should have 

been taken), the least-squares linear polynomial that passes through  

(–9, 5.7344), (–8, 6.7585), (–7, 6.4353), (–6, 7.9155), (–5, 8.4797), 

(–4, 8.7731), (–3, 9.6916), (–2, 10.5857), (–1, 12.0946), (0, 12.5924) 

is 12.3274 + 0.760293333333334n, where the relative difference in the estimator of the current point is 

close to 0.2% and the error in the slope is 0.5%. If we assume the jitter was 50% of a period, the relative 

difference in the estimator for the current point increases to 1% if the jitter is ignored. 

The value y
*
 to correct for jitter in least squares quadratic polynomials is shown Appendix C. Again, this 

can be calculated exactly, as opposed to using a series approximation as above, because we have the three 

sums Sy, SPxy and SPx2y already calculated. 

Which to use: linear or quadratic? 
If the sensor is read sufficiently often such that on that interval the reading is essentially linear, then using 

a least-squares linear polynomial is more than appropriate. For example, suppose we are taking an 

outdoor temperature reading outside once a minute. In this case, if we were using ten points to 

approximate the behavior of the temperature, then a linear polynomial would be sufficient. Similarly, in a 

self-driving vehicle, if a reading was being taken at a rate of 1 kHz, then even at 180 km/h, the vehicle 

would only move 0.5 m per 10 s, giving access to 11 samples in that time. Essentially, there should not 

be the possibility for a significant acceleration or deceleration over the period in which the samples are 

taken. Alternatively, if samples are not being taken sufficiently often, it may be better to use least-squares 

quadratic polynomials. Samples should, however, still be taken sufficiently often to ensure that it is 

unlikely that a serious change in surge (third derivative) during the time during which the samples are 

taken. 

Associated implementations 
The library least_sqrs_est.h is a C++ implementation of these estimators, but it is not efficient, as 

the coefficients are calculated during the execution, and thus the number of FLOPs is by no means optimal. 

There is, however, output to the std::clog stream displays C++ code that would optimally calculate 

that specific estimator. Sample output to this stream is shown in Appendix B.  

Summary 
It is difficult to extract information from noisy data, and one of the most reliable techniques are least-

squares polynomials. When the signal is sampled periodically, the evaluation of specific estimators 

simplifies to a linear combination of the samples, significantly reducing the number of floating-point 

operations.  

  



Appendix A: Using Maple to find these coefficients 
The tool used to find these expressions was Maple: 

> for N from 3 to 10 do 

    # Create the list [t, t - Delta[t], t – 2*Delta[t], ..., t – (N-1)*Delta[t]] 

    t_values := [seq( t - k*Delta[t], k = 0..N - 1 )]: 

    # Create the list [y[n], y[n - 1], y[n - 2], ..., y[n - (N-1)]] 

    y_values := [seq(  y[n-k], k = 0..N - 1 )]: 

 

    # Uncomment the first for a quadratic polynomial, and 

    # the second for a linear polynomial 

    p := CurveFitting:-LeastSquares( t_values, y_values, tau, curve = a*tau^2 + b*tau + c ): 

    # p := CurveFitting:-LeastSquares( t_values, y_values, tau, curve = b*tau + c ): 

 

    p := simplify( eval( p, tau = t ), size ) assuming real; 

    # p := simplify( eval( p, tau = t + h ), size ) assuming real; 

    # p := simplify( eval( diff( p, tau ), tau = t + h ), size ) assuming real; 

    # p := simplify( eval( diff( p, tau, tau ), tau = t + h ), size ) assuming real; 

    # p := simplify( int( p, tau = t - Delta[t]..t ), size ) assuming real; 

    p := expand( p ); 

    coefficients := [seq( coeff( p, y[n - k] ), k = 0..N - 1 )]; 

    denominator := ilcm( seq( denom( k ), k = coefficients ) ); 

    numerators := expand( coefficients*denominator ); 

    q := CurveFitting:-PolynomialInterpolation( [seq( -k, k = 0..N - 1 )], numerators, n ); 

    print( q/denominator ); 

end do: 

  



Appendix B 
A formatted sample output of what appears on the std::clog stream with N = 5 and N = 10 points is 

shown here. Recall that the compiler will calculate any arithmetic operations on floating-point literals: 

// Five points 
// Linear polynomial approximating y[n] 
   y_n = 9.0/15.0*y[n] + 6.0/15.0*y[n-1] + 3.0/15.0*y[n-2] - 3.0/15.0*y[n-4]; 
 
// Linear polynomial approximating y[n + 1] 
   y_n_1 = 8.0/10.0*y[n] + 5.0/10.0*y[n-1] + 2.0/10.0*y[n-2] - 1.0/10.0*y[n-3] - 4.0/10.0*y[n-4]; 
 
// Linear polynomial approximating the change per period at y[n] 
   dy_n = 4.0/20.0*y[n] + 2.0/20.0*y[n-1] - 2.0/20.0*y[n-3] - 4.0/20.0*y[n-4]; 
 
// Linear polynomial approximating the average value over the last period 
   average_y_n = 60.0/120.0*y[n] + 42.0/120.0*y[n-1] + 24.0/120.0*y[n-2] + 6.0/120.0*y[n-3] - 12.0/120.0*y[n-4]; 
 
// Linear correction for jitter 
   y[n] += epsilon*(-36.0/540.0*y[n] - 126.0/540.0*y[n-1] - 36.0/540.0*y[n-2] + 54.0/540.0*y[n-3] + 144.0/540.0*y[n-4]); 
 
// Quadratic polynomial approximating y[n] 
   y[n] = 31.0/35.0*y[n] + 9.0/35.0*y[n-1] - 3.0/35.0*y[n-2] - 5.0/35.0*y[n-3] + 3.0/35.0*y[n-4]; 
 
// Quadratic polynomial approximating y[n+1] 
   y_n_1 = 18.0/10.0*y[n] - 8.0/10.0*y[n-2] - 6.0/10.0*y[n-3] + 6.0/10.0*y[n-4]; 
 
// Quadratic polynomial approximating the change per period at y[n] 
   dy_n = 162.0/210.0*y[n] - 39.0/210.0*y[n-1] - 120.0/210.0*y[n-2] - 81.0/210.0*y[n-3] + 78.0/210.0*y[n-4]; 
 
// Quadratic polynomial approximating the concavity at y[n] 
   ddy_n = 6.0/21.0*y[n] - 3.0/21.0*y[n-1] - 6.0/21.0*y[n-2] - 3.0/21.0*y[n-3] + 6.0/21.0*y[n-4]; 
 
// Quadratic polynomial approximating the average value over the last period 
   average_y_n = 690.0/1260.0*y[n] + 411.0/1260.0*y[n-1] + 192.0/1260.0*y[n-2] + 33.0/1260.0*y[n-3] - 66.0/1260.0*y[n-4]; 
 
// Quadratic correction for jitter 
   y[n] += epsilon*( 
       -4374.0/6510.0*y[n] - 249.0/6510.0*y[n-1] + 4206.0/6510.0*y[n-2] + 3321.0/6510.0*y[n-3] - 2904.0/6510.0*y[n-4] 
   ); 
 
  



// Ten points 
// Linear polynomial approximating y[n] 
   y_n = 19.0/55.0*y[n]   + 16.0/55.0*y[n-1] + 13.0/55.0*y[n-2] + 10.0/55.0*y[n-3] + 7.0/55.0*y[n-4] 
       +  4.0/55.0*y[n-5] +  1.0/55.0*y[n-6] -  2.0/55.0*y[n-7] -  5.0/55.0*y[n-8] - 8.0/55.0*y[n-9]; 
 
// Linear polynomial approximating y[n + 1] 
   y_n_1 = 18.0/45.0*y[n]   + 15.0/45.0*y[n-1] + 12.0/45.0*y[n-2] + 9.0/45.0*y[n-3] + 6.0/45.0*y[n-4] 
         +  3.0/45.0*y[n-5]                    -  3.0/45.0*y[n-7] - 6.0/45.0*y[n-8] - 9.0/45.0*y[n-9]; 
 
// Linear polynomial approximating the change per period at y[n] 
   dy_n = 9.0/165.0*y[n]   + 7.0/165.0*y[n-1] + 5.0/165.0*y[n-2] + 3.0/165.0*y[n-3] + 1.0/165.0*y[n-4] 
        - 1.0/165.0*y[n-5] - 3.0/165.0*y[n-6] - 5.0/165.0*y[n-7] - 7.0/165.0*y[n-8] - 9.0/165.0*y[n-9]; 
 
// Linear polynomial approximating the average value over the last period 
   average_y_n = 315.0/990.0*y[n]   + 267.0/990.0*y[n-1] + 219.0/990.0*y[n-2] + 171.0/990.0*y[n-3] + 123.0/990.0*y[n-4] 
               +  75.0/990.0*y[n-5] +  27.0/990.0*y[n-6] -  21.0/990.0*y[n-7] -  69.0/990.0*y[n-8] - 117.0/990.0*y[n-9]; 
 
// Linear correction for jitter 
   y[n] += epsilon*( 
       459.0/9405.0*y[n]   - 831.0/9405.0*y[n-1] - 636.0/9405.0*y[n-2] - 441.0/9405.0*y[n-3] - 246.0/9405.0*y[n-4] 
     -  51.0/9405.0*y[n-5] + 144.0/9405.0*y[n-6] + 339.0/9405.0*y[n-7] + 534.0/9405.0*y[n-8] + 729.0/9405.0*y[n-9] 
   ); 
 
// Quadratic polynomial approximating y[n] 
   y[n] = 136.0/220.0*y[n]   + 84.0/220.0*y[n-1] + 42.0/220.0*y[n-2] + 10.0/220.0*y[n-3] - 12.0/220.0*y[n-4] 
         - 24.0/220.0*y[n-5] - 26.0/220.0*y[n-6] - 18.0/220.0*y[n-7]                     + 28.0/220.0*y[n-9]; 
 
// Quadratic polynomial approximating y[n+1] 
   y_n_1 = 108.0/120.0*y[n]   + 60.0/120.0*y[n-1] + 22.0/120.0*y[n-2] - 6.0/120.0*y[n-3] - 24.0/120.0*y[n-4] 
          - 32.0/120.0*y[n-5] - 30.0/120.0*y[n-6] - 18.0/120.0*y[n-7] + 4.0/120.0*y[n-8] + 36.0/120.0*y[n-9]; 
 
// Quadratic polynomial approximating the change per period at y[n] 
   dy_n = 2052.0/7920.0*y[n]   + 876.0/7920.0*y[n-1] -  30.0/7920.0*y[n-2] - 666.0/7920.0*y[n-3] - 1032.0/7920.0*y[n-4] 
        - 1128.0/7920.0*y[n-5] - 954.0/7920.0*y[n-6] - 510.0/7920.0*y[n-7] + 204.0/7920.0*y[n-8] + 1188.0/7920.0*y[n-9]; 
 
// Quadratic polynomial approximating the concavity at y[n] 
   ddy_n = 36.0/792.0*y[n]   + 12.0/792.0*y[n-1] - 6.0/792.0*y[n-2] - 18.0/792.0*y[n-3] - 24.0/792.0*y[n-4] 
         - 24.0/792.0*y[n-5] - 18.0/792.0*y[n-6] - 6.0/792.0*y[n-7] + 12.0/792.0*y[n-8] + 36.0/792.0*y[n-9]; 
 
// Quadratic polynomial approximating the average value over the last period 
   averagey_y_n = 23580.0/47520.0*y[n]   + 15636.0/47520.0*y[n-1] + 9102.0/47520.0*y[n-2] + 3978.0/47520.0*y[n-3] 
                 +  264.0/47520.0*y[n-4] -  2040.0/47520.0*y[n-5] - 2934.0/47520.0*y[n-6] - 2418.0/47520.0*y[n-7] 
                 -  492.0/47520.0*y[n-8] +  2844.0/47520.0*y[n-9]; 
 
// Quadratic correction for jitter 
   y[n] += epsilon*( 
       -106704.0/1077120.0*y[n]   - 291504.0/1077120.0*y[n-1] -  82104.0/1077120.0*y[n-2] +  70056.0/1077120.0*y[n-3] 
      + 164976.0/1077120.0*y[n-4] + 202656.0/1077120.0*y[n-5] + 183096.0/1077120.0*y[n-6] + 106296.0/1077120.0*y[n-7] 
      -  27744.0/1077120.0*y[n-8] - 219024.0/1077120.0*y[n-9] 
   ); 
  

  



Appendix C 
Correcting for jitter in least squares quadratic polynomials. Note that most if N is known at compile time, 

most coefficients can be calculated explicitly, reducing the run time to 44 FLOPs at run time. 

y = ( 
  ( 
    ( 
      ( 
        ( 
          ((((300.0*N - 2760.0)*N + 2940.0)*N - 1920.0)*N + 720.0)*y 
            + ((((-300.0*N + 2760.0)*N - 2940.0)*N + 1920.0)*N - 720.0)*S_y 
            + (((-1800.0*N + 8640.0)*N - 6840.0)*N + 2160.0)*SP_xy 
            - 1800.0*(N - 1.0)*(N - 2.0)*SP_xxy 
        )*epsilon + ( 
          720.0*N*(N - 1.0)*(((N - 6.0)*N + 3.0)*N - 2.0)*y 
            - 720.0*N*(N - 1.0)*(((N - 6.0)*N + 3.0)*N - 2.0)*S_y 
            - 120.0*N*(2.0*N - 1.0)*((17.0*N - 57.0)*N + 34.0)*SP_xy 
            - 360.0*N*((11.0*N - 27.0)*N + 22.0)*SP_xxy 
        ) 
      )*epsilon + ( 
        (((((((10.0*N + 622.0)*N - 3182.0)*N + 4030.0)*N - 1604.0)*N - 116.0)*N + 528.0)*N - 144.0)*y 
          + ((((((-612.0*N + 3132.0)*N - 4080.0)*N + 1644.0)*N + 156.0)*N - 528.0)*N + 144.0)*S_y 
          - 36.0*(N - 1.0)*((((89.0*N - 183.0)*N + 52.0)*N + 42.0)*N - 12.0)*SP_xy 
          + ((((-3000.0*N + 6000.0)*N - 3840.0)*N - 1320.0)*N + 720.0)*SP_xxy 
      ) 
    )*epsilon + ( 
      6.0*N*(N - 1.0)*(N - 2.0)*(2.0*N - 1.0)*(N + 1.0)*(((N + 21.0)*N - 16.0)*N + 12.0)*y 
        - 36.0*N*(N - 1.0)*(N - 2.0)*(2.0*N - 1.0)*(N + 1.0)*(3.0*(N - 1.0)*N + 2.0)*S_y 
        - 24.0*N*(2.0*N - 1.0)*(N + 1.0)*(((21.0*N - 60.0)*N + 56.0)*N - 20.0)*SP_xy 
        - 180.0*N*(N - 1.0)*(N + 1.0)*((5.0*N - 8.0)*N + 4.0)*SP_xxy 
    ) 
  )*epsilon + (N*N*(N - 1.0)*(N - 2.0)*(2.0 + N)*(3.0*(N - 1.0)*N + 2.0)*(N + 1.0)*(N + 1.0)*y) 
) / ( 
  ( 
    ( 
      ( 
        180.0*(N - 2.0)*(N - 1.0) 
            *((3.0*N - 3.0)*N + 2.0)*epsilon 
        + 360.0*N*(N - 2.0)*(N - 1.0)*((3.0*N - 3.0)*N + 2.0) 
      )*epsilon + 36.0*(N - 2.0)*((7.0*N + 1.0)*N - 1.0) 
          *(N - 1.0)*((3.0*N - 3.0)*N + 2.0) 
    )*epsilon + 36.0*N*(N - 1.0)*(N - 2.0)*(2.0*N - 1.0) 
        *(N + 1.0)*((3.0*N - 3.0)*N + 2.0) 
  )*epsilon + N*N*(N - 1.0)*(N - 2.0)*(2.0 + N) 
      *((3.0*N - 3.0)*N + 2.0)*(N + 1.0)*(N + 1.0) 
); 
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